B.A./B.Sc. FIRST YEAR MATHEMATICS SYLLABUS

SEMESTER – II, PAPER - 2

SOLID GEOMETRY

60 Hrs

UNIT - I (12 hrs): The Plane:

Equation of plane in terms of its intercepts on the axis, Equations of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane.

UNIT - II (12 hrs): The Line:

Equation of a line; Angle between a line and a plane; The condition that a given line may lie in a given plane; The condition that two given lines are coplanar; Number of arbitrary constants in the equations of straight line; Sets of conditions which determine a line; The shortest distance between two lines; The length and equations of the line of shortest distance between two straight lines; Length of the perpendicular from a given point to a given line;

UNIT - III (12 hrs) : Sphere :

Definition and equation of the sphere; Equation of the sphere through four given points; Plane sections of a sphere; Intersection of two spheres; Equation of a circle; Sphere through a given circle; Intersection of a sphere and a line; Power of a point; Tangent plane; Plane of contact; Polar plane; Pole of a Plane; Conjugate points; Conjugate planes;

UNIT - IV (12 hrs) : Sphere & Cones :

Angle of intersection of two spheres; Conditions for two spheres to be orthogonal; Radical plane; Coaxial system of spheres; Simplified from of the equation of two spheres.

Definitions of a cone; vertex; guiding curve; generators; Equation of the cone with a given vertex and guiding curve; Enveloping cone of a sphere; Equations of cones with vertex at origin are homogenous; Condition that the general equation of the second degree should represent a cone; Condition that a cone may have three mutually perpendicular generators;

UNIT - V (12 hrs) Cones & Cylinders:

Intersection of a line and a quadric cone; Tangent lines and tangent plane at a point; Condition that a plane may touch a cone; Reciprocal cones; Intersection of two cones with a common vertex; Right circular cone; Equation of the right circular cone with a given vertex; axis and semi-vertical angle.

Definition of a cylinder; Equation to the cylinder whose generators intersect a given conic and are parallel to a given line; Enveloping cylinder of a sphere; The right circular cylinder; Equation of the right circular cylinder with a given axis and radius.

Reference Books:

- 1. Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, Published by S. Chand & Company Ltd. 7th Edition.
- 2. A text book of Mathematics for BA/B.Sc Vol 1, by V Krishna Murthy & Others, Published by S. Chand & Company, New Delhi.
- 3. A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel Ahmed, Published by Wiley Eastern Ltd., 1999.
- 4. Co-ordinate Geometry of two and three dimensions by P. Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman published by Tata-MC Gran-Hill Publishers Company Ltd., New Delhi.

Suggested Activities:

Seminar/ Quiz/ Assignments/ Project on Application of Solid Geometry in Engineering

Weyer brain

MATHEMATICS MODEL PAPER SECOND SEMESTER – SOLID GEOME TRY COMMON FOR B.A & B.Sc

(w.e.f. 2016-17 admitted batch)

Time: 3 Hours

Maximum Marks: 75

SECTION-A

Answer any FIVE questions. Each question carries FIVE marks.

5 x 5 = 25 Marks

- 1. Find the equation of the plane through (4, 4, 0) and perpendicular to the planes x + 2y + 2z = 5and 3x + 3y + 2z - 8 = 0.
- 2. Find the image of a point (2, -1, 3) in the plane 3x 2y + z = 9.
- 3. Find the equation of the plane through the origin and containing the line x-3y+2z+3 = 0=3x-y+2z-5.
- 4. Find the length of the perpendicular from the point (1, 2, 3) to the line through the point (6, 7, 7) whose drs are 3, 2, -2.
- 5. Find the equation to the sphere through O = (0, 0, 0) and making intercepts a, b, c on the axes.
- 6. Find the polar line of $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ w.r.t. the sphere $x^2 + y^2 + z^2 = 16$.
- 7. Find the equation to the cone which passes through the three coordinate axes as well as the three lines $\frac{x}{2} = \frac{y}{1} = \frac{-z}{1}$, $\frac{x}{1} = \frac{y}{3} = \frac{z}{5}$ and $\frac{x}{8} = \frac{y}{-11} = \frac{z}{5}$.
- 8. Find the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 2y = 2$ with its vertex at (1, 1, 1).

SECTION-B

Answer the all FIVE questions. Each carries TEN marks.

5 x 10 = 50 Marks

- 9(a). A variable plane is at a constant distance 'p' from the origin and meets the coordinate axes in A,B,C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$
- 9(b). Find the bisecting plane of the acute angle between the planes 3x-2y+6z=0, -2x+y-2z-2=0. 10(a). Find the S.D. between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$, $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Find also the equations and the points in which the S.D. meets the given li

10(b) Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find their point of

- 11(a) Find the equations of the spheres passing through the circle $x^2+y^2=4$, z=0 and is intersected by the plane x=+2y+2z=0 in a circle of radius 3.
- 11(b) Show that the spheres $x^2 + y^2 + z^2 2x 4y 6z 50 = 0$, $x^2 + y^2 + z^2 - 10x + 2y + 18z + 82 = 0$ touch externally at the point $\left(\frac{45}{13}, \frac{2}{13}, \frac{-57}{13}\right)$.
- 12(a) Find the limiting points of the coaxal system defined by spheres $x^2 + y^2 + z^2 + 4x - 2y + 2z + 6 = 0$ and $x^2 + y^2 + z^2 + 2x - 4y - 2z + 6 = 0$
- 12(b) Find the equation of the lines of intersection of the plane 2x+y-z=0 and the cone $4x^2-y^2+3z^2=0$
- 13(a) Find the equation to the right circular cone whose vertex is P(2, -3, 5), axis PQ which makes equal angles with the axis and which passes through A(1, -2, 3).
- 13(b). Find the equations of the tangent planes to the cone $9x^2 4y^2 + 16z^2 = 0$ which contains the $\lim \frac{x}{32} = \frac{y}{72} = \frac{z}{27}$

[CB-BA228/CB-BS232]

2016.1 AT THE END OF B.A. & B.SC. SECOND SEMESTER **DEGREE EXAMINATIONS**

MATHEMATICS-II-SOLID GEOMETRY

(COMMON FOR B.A, B.Sc)

(W.e.f. Admitted Batch 2015-2016)

(CBCS PATTERN)

Time: 3 Hours

Maximum: 75 Marks

Section - A

Answer any five of the following questions. Each question $(5\times 5=25)$ carries five marks.

ఏవైనా ఖదు ప్రశ్నలకు సమాధానములు వ్రాయుము.ప్రతి ప్రశ్నకు ఖదు మార్కులు.

A plane meets the coordinate axes in A, B, C. If the centroid of $\triangle ABC$ is (a, b, c). Show that the equation to

the plane is
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$$
.

ఒక తలము నిరూపకాక్షాలను A,B,C ల వద్ద తాకుచున్నది. ΔABC యొక్క కేంద్రభాసము $(a,\ b,\ c)$ అయితే తలము సమీకరణము

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$$
 అన్ని చూపుము.

Turn over

- 2. Find the equation of the line through the point (1, 2, 4) and parallel to the line 3x + 2y z = 4, x 2y 2z = 5.
 - (1,2,4) బిందువు గుండా పోతూ 3x+2y-z=4, x-2y-2z=5 రేఖకు సమాంతరంగా వున్న రేఖ సమీకరణాలను కనుక్కోండి.
- Find the equations of the straight line passing through the point (1, 0, -1) and intersecting the lines 4x-y-13=0=3y-4z-1; y-2z+2=0=x-5.

$$(1,0,-1)$$
 బిందువు గుండా పోతూ $4x-y-13=0=3y-4z-1$; $y-2z+2=0=x-5$ రేఖలను ఖండించే రేఖ సమీకరణము కనుక్కోండి.

- 4. Show that the four points (-8, 5, 2), (-5, 2, 2), (-7, 6, 6), (-4, 3, 6) are concylic.
 - (-8, 5, 2), (-5, 2, 2), (-7, 6, 6), (-4, 3, 6) అనే నాలుగు బిందువులు చక్రీయాలు అని చూపండి.
- 5. Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$ and find the point of contact.

$$x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$$
 అనే గోళాన్ని $2x - 2y + z + 12 = 0$ తలము స్పృశీస్తుంది అని చూపి మరియు దాని స్పర్శబిందువు కనుక్కోండి.

6. Find the enveloping cone of the sphere
$$x^2 + y^2 + z^2 + 2x - 2y = 2$$
 with its vertex at $(1, 1, 1)$.

శీర్నము
$$(1, 1, 1)$$
 గా వుండి $x^2 + y^2 + z^2 + 2x - 2y = 2$ అనే గోళమునకు స్పర్శశంఖువు యొక్క సమీకరణం కనుక్యాండి.

7. Find the equation of the lines of intersection of the plane
$$2x + y - z = 0$$
 and the cone $4x^2 - y^2 + 3z^2 = 0$.

$$2x + y - z = 0$$
 తలము $4x^2 - y^2 + 3z^2 = 0$ శంఖువును ఖండించే రేఖల సమీకరణాలు కనుక్కోండి.

8. Find the equation of the cylinder whose generators are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which passes through the curve $x^2 + y^2 = 16$; z = 0.

the state of the s

ఒక స్థూపకము యొక్క జనకరేఖలు
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 అను రేఖకు సమాంతరంగా వుండి $x^2 + y^2 = 16$; $z = 0$ అను భూవక్రము గుండా పోతే దాని సమీకరణమేది?

Section - B

Answer the following questions. Each question carries ten marks. $(5 \times 10 = 50)$

అన్ని (పశ్నలకు సమాధానములు వ్రాయుము.(పతి (పశ్నకు 10 మార్కులు

A variable plane is at a constant distance 'P' from the origin and meets the axes in A, B, C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$.

Pa

ఒక చరతలము మూలబిందువు నుండి ఎల్లప్పుడు P దూరంలో ఉండి నిరూపకాక్షాలను A,B,Cల వద్ద ఖండించుచున్నది. OABC చతుర్ముఖి కేంద్రాభాసము యొక్క బింధుపథము $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$ అని చూపుము.

(OR/ඒකා)

b) Find the equation of the plane passing through the intersection of the planes x + 2y + 3z = 4; 2x + y - z + 5 = 0 and perpendicular to the plane 6z + 5x + 3y + 8 = 0.

x + 2y + 3z = 4; 2x + y - z + 5 = 0 తలాలచ్చేదన రేఖ గుండా పోతూ 6z + 5x + 3y + 8 = 0 అనే తలానికి లంబంగా వున్న తలం సమీకరణము కనుక్కోండి.

10. a) A variable plane makes intercepts on the axes, the sum of whose squares is K^2 (a constant). Show that the locus of the foot of the perpendicular from origin to the plane is $(x^{-2} + y^{-2} + z^{-2})(x^2 + y^2 + z^2)^2 = K^2$.

ఒక చరతలము నిరూపకాక్షాలపై చేయు అంతర్ఖండముల వర్గముల మొత్తము \mathbf{K}^2 (ఒక స్థిరసంఖ్య). మూల బిందువు నుంచి ఆ తలమునకు గీచిన లంబ పాదము బిందుపథము $(x^{-2}+y^{-2}+z^{-2})(x^2+y^2+z^2)^2=\mathbf{K}^2$ అని చూపండి.

Find the equations of the line intersecting the lines 2x + y - 1 = 0 = x - 2y + 3z; 3x - y + z + 2 = 0 = 4x + 5y - 2z - 3 and is parallel to the line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}.$

$$2x + y - 1 = 0 = x - 2y + 3z$$
; $3x - y + z + 2 = 0 = 4x + 5y - 2z - 3$ రేఖలను ఛేదిస్తూ $\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3}$ రేఖకు సమాంతరంగా ఉన్న రేఖ సమీకరణాలను కనుక్మాండి.

11. a) Show that the two circles $x^2 + y^2 + z^2 - y + 2z = 0$; x - y + z = 2 and $x^2 + y^2 + z^2 + x - 3y + z - 5 = 0$; 2x - y + 4z - 1 = 0 lie on the same sphere and find its equation.

 $x^2 + y^2 + z^2 - y + 2z = 0$; x - y + z = 2 మరియు $x^2 + y^2 + z^2 + x - 3y + z - 5 = 0$; 2x - y + 4z - 1 = 0 అను రెండు వృత్తాలు ఒకే గోళముపై ఉంటాయని చూపి దాని సమీకరణము కనుక్యాండి.

(OR/ල්යා)

b) Show that the spheres $x^2 + y^2 + z^2 - 2x - 4y - 6z - 50 = 0$; $x^2 + y^2 + z^2 - 10x + 2y + 18z + 82 = 0$ touch externally at the point $\left(\frac{45}{13}, \frac{2}{13}, \frac{-57}{13}\right)$.

$$x^2+y^2+z^2-2x-4y-6z-50=0;$$
 $x^2+y^2+z^2-10x$
 $+2y+18z+82=0$ గోంకాలు $\left(\frac{45}{13},\frac{2}{13},\frac{-57}{13}\right)$ బిందువు

వద్ద బాహ్యంగా స్పృశించుకుంటాయి అని చూపండి.

12. a) Find the angle between the lines of intersection of the plane x-3y+z=0 and the cone $x^2-5y^2+z^2=0$.

 $x^2-5y^2+z^2=0$ అను శంఖువు మరియు x-3y+z=0 అను తలము ఖండన రేఖాయుగ్మము మధ్య కోణము కనుక్కోండి.

(OR/ම්කා)

b) If $\frac{x}{1} = \frac{y}{1} = \frac{z}{2}$ is one of the three mutually perpendicular generators of the cone 3yz - 2zx - 2xy = 0, find the other two.

3yz - 2zx - 2xy = 0 అను శంఖువునకు గల మూడు పరస్పర

లంబంగా వుందే జనక రేఖలలో ఒకటి $\frac{x}{1} = \frac{y}{1} = \frac{z}{2}$ అయితే మిగితా వాటి సమీకరణాలేవి?

3. a) Find the equation to the right circular cylinder, whose axis is x = 2y = -z and having the radius 4.

x=2y=-z అక్షంగానూ 4 వ్యాసార్థమున్న లంబవర్తుల స్థూపక సమీకరణం కనుక్కొండి.

b) Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 = 25$, whose generators parallel

to
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
.

 $x^2+y^2+z^2=25$ గోళాన్ని స్పర్శిస్తూ, జనకరేఖలు $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ నకు సమాంతరంగా ఉన్న స్థిర స్థూపక సమీకరణం కనుక్కోండి.

[CB-R-BA228/CB-R-BS232]

AT THE END OF SECOND SEMESTER DEGREE EXAMINATIONS

MATHEMATICS-II-SOLID GEOMETRY

(COMMON FOR B.A, B.Sc)

(W.e.f. Admitted Batch 2016-2017)

(CBCS PATTERN)

Time: 3 Hours

2017/18

Maximum: 75 Marks

SECTION-A

I. Answer any Five questions. (5×5=25) ఏమైనా ఐదు స్థాపత్సలకు జవాబులు స్థాయుము.

1. Find the equations of the planes through the intersection of the planes x+3y+6=0, 3x-y-4z=0 such that the perpendicular distance of each from the origin is unity.

x+3y+6=0 3x-y-4z=0 తలాల ఖండనరేఖ గుండా పోతూ మూలభిందువు నుంచి 1 యూనిట్ దూరములో ఉన్న తలాల సమీకరణములు కనుక్మొండి.

2. Find the equation of the line through the point (1,2,4) and parallel to the line 3x+2y-z=4, x-2y-2z=5.

(1,2,4) బిందువు గుండా పోతూ 3x+2y-z=4, x-2y-2z=5 రేఖకు సమాంతరంగా ఉన్న రేఖ సమీకరణాలను కనుక్కోండి.

3. Show that the line $\frac{x-3}{3} = \frac{2-y}{4} = \frac{z+1}{1}$ intersects the line [Turn over

(2) [CB-R-BA228/CB-R-BS232]

$$2x+4y+3z+3=0$$
, $x+2y+3z=0$ in the point (9,-6,1).

$$\frac{x-3}{3} = \frac{2-y}{4} = \frac{z+1}{1}$$
 అనే రేఖ $2x+4y+3z+3 = 0$, $x+2y+3z$

=0 రేఖను (9,-6,1) అనే బిందువులో ఖండిస్తుందని చూపండి.

4. A plane passes through a fixed point (a,b,c) and intersects the axes in A,B,C. Show that the center of the sphere OABC

$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$$

ఒక తలము (a,b,c) అనే స్థిరబిందువు గుండా పోతూ అక్షాల్ని వరుసగా

$$A,B,C$$
ల వద్ద ఖండిస్తుంది. OABC గోళకేంద్రము పై $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$ ఉంటుందని చూపండి.

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 రేఖకు $x^2 + y^2 + z^2 = 16$ గోళం దృష్యె \bullet ద్రువరేఖ కనుక్కోండి.

6. Show that the spheres $x^2+y^2+z^2+6y+2z+8=0$; $x^2+y^2+z^2+6x+8y+4z+20=0$ are orthogonal.

$$x^2+y^2+z^2+6y+2z+8=0; x^2+y^2+z^2+6x+8y+4z+20=0$$
 అనే గోళాలు లంబంగా ఉంటాయని చూపండి. .

7. Find the equation of the quadnic cone through the coordinate axes and three lines

$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}, \frac{x}{-1} = \frac{y}{1} = \frac{z}{1}$$
 and $\frac{x}{5} = \frac{y}{4} = \frac{z}{1}$

నిరూపక్షాల గుండా పోతూ

$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}, \frac{x}{-1} = \frac{y}{1} = \frac{z}{1}$$
 and $\frac{x}{5} = \frac{y}{4} = \frac{z}{1}$ జనక రేఖలు గల శంఖు సమీకరణం కనుక్యాండి.

8. Find the condition that one plane ux+vy+wz=0 way touch the cone $ax^2+by^2+cz^2=0$.

ux+vy+wz=0 అను తలము $ax^2+by^2+cz^2=0$ శంఖువును స్పర్శించే నిబంధనను కనుక్కోండి.

SECTION-B

II. Answer ALL questions.

 $(5 \times 10 = 50)$

అన్ని ప్రశ్నలకు జవాబులు వ్రాయుము.

a) A variable plane is at a constant distance "p" from the origin and meets the axes in A,B,C. Show that the louis of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16p^{-2}$.

ఒక చరతలము మూల బిందువు నుండి ఎల్లప్పుడూ "p" దూరంలో ఉండి నిరూపక్షాలని A,B,C ల వద్ద ఖండించుచున్నధి. OABC చతుర్ముఖ కేంద్రాభానము యెలక్క బిందు వధము $x^{-2}+y^{-2}+z^{-2}=16p^{-2}$ అని చూపుము.

Turn over

(OR/ಶೆದ್)

Find the equation to the plane through the line of intersection of x-2y-z+3=0, -3x-5y+2z+1=0 and perpendicular to yz plane.

perpendicular to yz plane.
$$x-2y-z+3=0$$
, $-3x-5y+2z+1=0$ తలాల చ్చేదన రేఖ $x-2y-z+3=0$, $-3x-5y+2z+1=0$ తలాల చ్చేదన రేఖ గుండా పోతూ yz తలానికి లంబంగా ఉన్న తలానికి సమీకరణం. కనుక్కోండి.

10. a) Show that the equation of the perpendicular from the point (1,6,3) to the line

$$\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} are x - 1 = 0, \frac{y-6}{-3} = \frac{z-3}{2} \text{ and}$$
the foot of the perpendicular is (1,3,5) and the length of the perpendicular is $\sqrt{13}$.

$$(1,6,3)$$
 బిందువు నుండి $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ అనే రేఖకు గీచిన

చూపండి. మరియు లంబపాదం (1,3,5) అని లంబదూరం $\sqrt{13}$ అని చూపండి.

(OR/ඒක්)

b) Find the length and equations of the line of S.D. between the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$ and x+y+2z-3 = 0 = 0

(5) [CB-R-BA228/CB-R-BS232]

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$$
 మరియు $x+y+2z-3 = 0 = 2x+3y+3z -4$.

అను రేఖల మధ్య అల్పతమ దూర రేఖ పొడవును మరియు దాని సమీకరణములను కనుక్కోండి.

11. a) Show that the two circles $x^2+y^2+z^2 - y+2z = 0$; x-y+z=2 and $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 line on the same sphere and its equation.

 $x^2+y^2+z^2-y+2z=0$; x-y+z=2 మరియు $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 అనే రెండు వృత్తాలు ఒకే గోళముపై ఉంటాయని చూపి దాని సమీకరణము కనుక్కోండి.

b) Find the pole of the plane x-y+5z-3 = 0 w.r.to the sphere $x^2+y^2+z^2=9$.

 $x^2+y^2+z^2=9$ అనే గోళము దృష్ట్యే x-y+5z-3=0 అను తలము యొక్క ద్గువము కనుక్కోండి.

Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.

 $x^2+y^2+z^2-4x+6y+4=0$. గో శాన్ని లంబంగా ఖండిస్తూ (1,-2,1) వద్ద 3x+2y-z+2=0 తలాన్ని స్పృశించే గో ళము సమీకరణము కనుక్కోండి.

(6) [CB-R-BA228/CB-R-BS232]

(OR/ඒකා)

- b) Find the limiting points of the coaxal system of spheres of which two members are $x^2+y^2+z^2+3x-3y+6=0$; $x^2+y^2+z^2-6y-6z+6=0$. $x^2+y^2+z^2+3x-3y+6=0$; $x^2+y^2+z^2-6y-6z+6=0$. గో కాలతో నిర్ధిష్టమయ్యే సహతల గో కసరణికి అవధి బిందువులు కనుక్కోండి.
- 13. a) Show that if a right circular cone has sets of three mutually perpendicular generations, its semivertical angle must be $\tan^{-1} \sqrt{2}$.

 ఒక వర్తుల శంఖువునకు, మూడు పరస్పరం లంబంగా ఉందే జనకరేఖలుంటే దాని శీర్వార్న కోణము $\tan^{-1} \sqrt{2}$ అవుతుంది అని చూపండి.

(OR/**లే**යా)

b) Find the plane which touches the cone $x^2+y^2-3z^2+2yz-5zx+3xy=0$. along the generator whose direction ratios are (1,1,1)

 $x^2+y^2-3z^2+2yz-5zx+3xy=0$. అను శంఖువును (1,1,1) దిక్సంఖ్యలు కల జనకరేఖ వెంబడీ స్పర్శించే తల సమీకరణమేది?

2018,19

[CB-R-BA228/CB-R-BS232]

AT THE END OF SECOND SEMESTER

DEGREE EXAMINATIONS

MATHEMATICS-II-SOLID GEOMETRY

(COMMON FOR B.A., B.Sc.)

(w.e.f. Admitted Batch 2016-2017)

(CBCS PATTERN)

Time: 3 Hours

Maximum: 75 Marks

SECTION-A

విభాగము - ఎ

Answer any Five questions.

ఏవైనా ఐదు ప్రశ్నలకు సమాధానములు వ్రాయుము.

 $(5 \times 5 = 25)$

- 1. Find the equation of the two planes which pass through (0,4,-3) and (6,-4,3) and which Cut off from the axes intercepts whose sum is zero.
 - (0,4,-3) మరియు (6,-4,3) బిందువుల గుండా పోతూ నిరూపకాక్షాల మీద చేసే అంతర ఖండాల మొత్తం సున్న అయ్యేటట్లున్న తలాల సమీకరణాలను కనుక్కోండి.
- 2. Find the area of the triangle whose vertices are (4, 3, 2) (3, 0, 1) and (2, -1, 3) (4, 3, 2) (3, 0, 1) (2, -1, 3) లు శీర్నాలుగా గల త్రిభుజ వైశాల్యాన్ని కనుక్మాండి.

Turn over

23000

3. Prove that the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}; \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$
 are

coplanar and find the equation to the plane containing the lines.

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}; \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$
 రేఖలు

సతలీయాలని చూపండి మరియు వీటి గుండా తలంను కనుక్కోండి.

- 4. Find the enveloping cone of the sphere $x^2+y^2+z^2+2x-4y=0$ with its vertex at (1,1,1) (1,1,1) వద్ద శీర్నము ఉండి. $x^2+y^2+z^2+2x-4y=0$ అను గోళమునకు, స్పర్మ శంఖవు సమీకరణము కనుక్కోండి.
- 5. Prove that the equation

$$ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$$

represents a cone if
$$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$$

$$ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$$
 అను

సమీకరణము ఒక శంఖువును సూచిస్తే
$$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$$
 అని చూపండి.

(3) [CB-R-BA228/CB-R-BS232]

Show that the plane 2x-2y+z+12=0 touches the sphere $x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$ and find the point of contact.

$$x^2+y^2+z^2-2x-4y+2z-3=0$$
 అనే గోళాన్ని $2x-2y+z+12=0$ తలము స్పృశిస్తుందని చూపి మరియు దాని స్పర్శ బిందువు కనుక్కోండి.

- 7. Find the equation of the right circular cylinder whose axis is x-2=z, y=0 and passes through the point (3,0,0) (3,0,0) బిందువు గుండా పోతూ x-2=z, y=0 రేఖ అక్షంగా గల లంబవర్తుల స్థూపక సమీకరణం కనుక్యాండి.
- 8. Find the equation $x^2 + y^2 = 16$, z = 0 to the cylinder $\begin{cases} x \\ y \\ y \end{cases}$ whose generators are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 కి సమాంతరముగా ఉత్పాదకాలను గలిగి భూవుక్రమును $x^2 + y^2 = 16, z = 0$ గా గలిగిన స్థూపము సమీకరణాన్ని కనుక్కోండి.

Turn over

SECTION-B

విభాగము – బి

Answer the following (One question from each unit) $(5\times10=50)$

అన్ని ప్రశ్నలకు జవాబులు వ్రాయుము. ప్రతి యూనిట్ నుండి ఒక దానిని ఎంచుకొని సమాధానములు వ్రాయుము.

Unit - I

9. a) Obtain the equation of the plane which passes through the point (-1, 3, 2) and is perpendicular to each of the planes

$$x + 2y + 2z = 5,3x + 2y + 2z = 8$$

(-1, 3, 2) బిందువు గుండా పోతూ

$$x+2y+2z=5, 3x+2y+2z=8$$
 తలములు,

రెండింటికి లంబంగా ఉండే తలం సమీకరణాన్ని కనుక్కోండి.

b) A variable plane is at a constant distance 3p from the origin and meets the axes in A, B, C. Then show that the locus of the centroid of the \triangle ABC is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$

ఒక చరతలము మూలబిందువు నుంచి ఎల్లప్పుడూ 3p దూరములో ఉంటూ నిరూపకాక్షాలను A, B, C ల వద్ద ఖండించుచున్నది ΔABC యొక్క కేంద్రబాసము యొక్క బిందు పధము $x^{-2} + y^{-2} + z^{-2} = p^{-2}$ అని చూపండి.

Unit-II

Find the equation of the straight line passing through the point (1,0,-1) and Intersecting the lines

$$4x-y-13=0=3y-4z-1; y-2z+2=0=x-5$$

(1,0,-1) బిందువు గుండా పోతూ

$$4x-y-13=0=3y-4z-1; y-2z+2=0=x-5$$

రేఖలను ఖండించే రేఖ సమీకరణములను కనుక్కోండి.

(OR/**ම්**ක<u>)</u>

b) Find the length and equations to the line of shortest distance between the lines

$$\frac{x}{4} = \frac{y+1}{3} = \frac{z-2}{2}, 5x-2y-3z+6=0=x-3y+2z-3$$

$$\frac{x}{4} = \frac{y+1}{3} = \frac{z-2}{2}, 5x-2y-3z+6=0=x-3y+2z-3$$

రేఖల మధ్య అల్పతమ దూరాన్ని, అత్యల్ప దూర రేఖకు సమీకరణాన్ని కనుక్కోండి.

Unit - III

11. a) Obtain the equations of the sphere which passes through the circle

$$x^{2} + y^{2} + z^{2} - 2x + 2y - 4z + 3 = 0, 2x + y + z = 4$$

and touch the plane 3x + 4y = 14

$$x^{2} + y^{2} + z^{2} - 2x + 2y - 4z + 3 = 0, 2x + y + z = 4$$

వృత్తం గుండా పోతూ, 3x + 4y = 14 తలాన్ని స్పృశించే గోళం సమీకరణంను కనుక్మోండి.

Turn over

(6) [CB-R-BA228/CB-R-BS232]

(OR/ඒකු)

b) Show that the polar line of $\frac{x+1}{2} = \frac{y-2}{3} = z+3$ with respect to the sphere $x^2 + y^2 + z^2 = 1$ is the

line
$$\frac{7x+3}{11} = \frac{2-7y}{5} = \frac{z}{-1}$$

$$x^2 + y^2 + z^2 = 1$$
 వృత్తం దృష్ట్యే

$$\frac{x+1}{2} = \frac{y-2}{3} = z+3$$
 యొక్క దృవరేఖ

$$\frac{7x+3}{11} = \frac{2-7y}{5} = \frac{z}{-1}$$
 రేఖ అని చూపండి.

Unit-IV

12. a) Find the equations of the lines in which the plane 2x+y-z=0 intersects the cone $4x^2-y^2+3z^2=0$. Also find the acute angle between these lines.

$$2x+y-z=0$$
 తలం $4x^2-y^2+3z^2=0$ శంఖువును ఖండించే సరళరేఖలను, వాటి మధ్య అల్ఫకోణాన్ని కనుక్కోండి.

(OR/**ల්**ದಾ)

45-

b) State and prove a necessary and sufficient condition for a cone to admit a set of 3 mutually perpendicular generators.

ఒక శంఖువు మూడు పరస్పరం లంబంగా ఉండే ఉత్పాదకాల సమితిని అనుమతించదానికి ఒక ఆవశ్యక పర్యాప్తనియమాన్ని (ప్రవచించి, దానిని నిరూపించండి.

Unit - V

13. a) Find the equation of the right circular cone whose vertex is (1, -2, -1) axis the line

$$\frac{x-1}{3} = \frac{y+2}{4} = \frac{z+1}{5}$$
 and semi - vertical angle 60°.

రేఖను అక్షముగా గలిగి మరియు శీర్వార్థకోణము 60° గా కలిగిన లంబవర్తుల శంఖువు యొక్క సమీకరణాన్ని కనుక్కోండి.

(OR/ඒක්)

b) Find the equation of the right circular cylinder of radius 5 unit and having its axis the line

$$\frac{1}{2}x = \frac{1}{3}y = \frac{1}{6}z$$

5 యూనిట్ల వ్యాసార్థమును కల్గి $\frac{1}{2}x = \frac{1}{3}y = \frac{1}{6}z$ రేఖను అక్షముగా

కలిగిన లంబవర్తుల స్థాపము యొక్క సమీకరణాన్ని కనుక్కోండి.

SUPPLU AY
2020 SEPT [CB-R-BA228/CB-R-BS232]

AT THE END OF SECOND SEMESTER -(CBCS PATTERN)

MATHEMATICS - II-SOLID GEOMETRY

(COMMON FOR B.A., B.Sc.)

(w.e.f. Admitted Batch 2016-2017)

Time: 3 Hours

Maximum: 75 marks

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

Find the equation of the plane passing through the 1. points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9.

(2,2,1) మరియు (9,3,6) బిందువుల గుండా పోతూ 2x + 6y + 6z = 9 తలమునకు లంబంగా ఫుండే తలానికి సమీకరణం కనుక్కొండి.

Find the equation of the bisecting plane bisecting 2. angle between the acute the 3x - 2y + 6z + 2 = 0, 2x - y + 2z + 2 = 0.

3x-2y+6z+2=0, 2x-y+2z+2=0 తలముల మధ్యగల అల్పకోణమును సమద్విఖండన చేయు తలం యొక్క సమీకరణం కనుక్కోండి.

- Find the image of the point (1, 3, 4) in the plane 2x-y+z+3=0.
 - (1,3,4) బిందువు యొక్క ప్రతిబింబము 2x-y+z+3=0 యొక్క తలములో కనుగొనుము.
- 4. Find the equation of the plane which contains the line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$ and is perpendicular to the plane x+2y+z=12.

$$\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$$
 రేఖను కలిగియుండి $x+2y+z=12$ తలమునకు లంబంగా ఫుండే తలం యొక్క సమీకరణం కనుక్కొండి.

5. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3). Also find its centre and radius.

వృత్తము
$$x^2 + y^2 + z^2 = 9$$
, $2x + 3y + 4z = 5$ మరియు బిందువు $(1, 2, 3)$ ల గుండా పోయే గోళం సమీకరణం కనుగొని దాని కేంద్రం మరియు వ్యాసార్ధం కనుగొనుము.

- 6. Show that the spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 24x 40y 18z + 25 = 0$ touch externally and find their point of contact. $x^2 + y^2 + z^2 = 25$, $x^2 + y^2 + z^2 24x 40y 18z + 25 = 0$ గోళాల బాహ్యంగా స్పృశించుకొంటాయని చూపి స్పర్శ బిందువును కనుక్కోండి.
- 7. Find the equation of the cone which passes through the three co-ordinate axes and the lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3} \text{ and } \frac{x}{2} = \frac{y}{1} = \frac{z}{1}.$ $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3} \text{ మరియు } \frac{x}{2} = \frac{y}{1} = \frac{z}{1} \text{ ਰేఖల గుండా మరియు }$ నిరూపకాంక్షముల గుండా పోయే శంఖువు సమీకరణాన్ని కనుక్కొండి.
- 8. Find the equation to the cylinder whose generators are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which passes through the curve $x^2 + y^2 = 16$, z = 0. ఉత్పాదకాలకు $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ కి సమాంతరంగా ఉత్పాదకాలు కలిగి భూవ్యకము $x^2 + y^2 = 16$, z = 0 గుండా పోయే స్థాపము సమీకరణాన్ని కనుక్కొండి.

3

2020

[CB-R-BA228/ CB-R-BS232]

SECTION B — $(5 \times 10 = 50 \text{ marks})$ Answer ALL questions.

9. (a) Find the equation of the plane through (4,4,0) and perpendiculare to the planes x+2y+2z=5 and 3x+3y+2z-8=0. (4,4,0) బిందువు గుండా పోతూ x+2y+2z=5, 3x+3y+2z-8=0 తలములు రెండింటికీ లంబంగా

Or

ఫుండే తలం సమీకరణం కనుక్కోండి.

(b) Find the equation of the plane passing through the intersection of the planes x+2y+3z=4, 2x+y-z+5=0 and perpendicular to the plane 5x+3y+6z+8=0.

5x+3y+6z+8=0 తలమునకు లంబంగా ఫుంటూ x+2y+3z=4, 2x+y-z+5=0 తలముల చేదన .రేఖను కలిగి ఫుండే తలం సమీకరణాన్ని కనుక్కోండి.

4

2020

[CB-R-BA228/ CB-R-BS232] 10. (a) Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find their point of intersection and the plane containing the lines.

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$
రేఖలు ఒకే తలముపై వుండునని చూపి ఆ తల సమీకరణము మరియు వాటి ఖండన బిందువు కనుగొనుము.

Or

(b) Find the shortest distance and the equations of shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}; \frac{z+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$

ຈັນພ
$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}; \frac{z+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$$
 ຍ

మధ్య కనిష్ఠ దూరము మరియు దాని సమీకరణము కనుగొనుము. 11. (a) Show that the two circles $x^2+y^2+z^2-y+2z=0$, x-y+z-2=0; $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 lie on the same sphere and find its equation.

రెండు వృత్తాలు
$$x^2+y^2+z^2-y+2z=0$$
, $x-y+z-2=0$; $x^2+y^2+z^2+x-3y+z-5=0$, $2x-y+4z-1=0$ లు ఒకే గోళం పై వుండునని చూపి దాని సమీకరణము కనుగొనుము.

Or

(b) Show that the plane 2x-2y+z+12=0 touches the sphere $x^2+y^2+z^2-2x-4y+2z-3=0$ and find the point of contact. 2x-2y+z+12=0 తలం $x^2+y^2+z^2-2x-4y+2z-3=0$ గోళమును స్పృశించునని చూపి స్పర్శ బిందువును కనుగొనుము.

12. (a) Find the vertex of the cone
$$7x^2 + 2y^2 + 2z^2 - 10xz + 10xy + 26x - 2y + 2z - 17 = 0$$

శంఖు $7x^2 + 2y^2 + 2z^2 - 10xz + 10xy + 26x - 2y + 2z - 17 = 0$ యొక్క శ్రీర్లము కనుగొనుము.

Or

- 13. (a) Find the equation of the right circular cylinder whose guiding circle is $x^2+y^2+z^2=9,\ x-y+z=3.$ భూ వ్వకం $x^2+y^2+z^2=9,\ x-y+z=3$ గా కలిగిన లంబవర్తుల స్థాపం యొక్క సమీకరణం కనుగొనుము.

Or

(b) Find the equation to the right circular cylinder whose axis is $\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}$ and radius 2.

$$\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}$$
 రేఖను అక్షముగా కలిగి 2 వ్యాసార్థం
గల లంబవర్తుల స్థూపం సమీకరణం కనుగొనుము.

[CB-BA228/CB-BS232]

AT THE END OF SECOND SEMESTER (CBCS PATTERN) DEGREE EXAMINATIONS MATHEMATICS - II - SOLID GEOMETRY

(Common for B.A. B.Sc.)

(W.e.f. Admitted Batch 2015-2016)

Time: 3 Hours Maximum: 75 Marks

Note: This paper consists of Two parts. Follow the

instructions carefully.

SECTION - A

్సెక్షన్ – ఎ

Answer any Five questions each question carries Five marks. $(5\times5=25)$

ఏవైనా **బందింటికి** సమాధానం వ్రాయండి. ప్రతి ప్రశ్నకు 5 మార్కులు.

1. Find the equation to the plane through the line of intersection of x-y+3z+5=0 and 2x+y-2z+6=0 and passing through (-3,1,1).

x-y+3z+5=0 మరియు 2x+y-2z+6=0 తలాల ఖండన రేఖ గుండాపోతూ (-3,1,1) బిందువు గుండా పోయే తలానికి సమీకరణం కనుక్యాండి.

2. Find the point if intersection of the lines.

$$\frac{x-1}{-3} = \frac{y-3}{2} = \frac{z-3}{2}$$
 and $\frac{x-1}{3} = \frac{y-5}{3} = \frac{z}{-5}$

రేఖల ఖండన బిందువును కనుక్కోండి.

[Turn over

(2) [CB-BA228/CB-BS232]

3. Find the equation to the plane containing the line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$ and is perpendicular to the plane x+2y+z-12=0.

$$\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$$
 అనే నరళ రేఖను కరిగి ఉంది $x+2y+z-12=0$ అనే తలమునకు లంబంగా ఉందే తలము సమీకరణము కనుక్కోండి.

4. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1,2,3).

$$x^2 + y^2 + z^2 = 9$$
, $2x + 3y + 4z = 5$ వృత్తము గుండా మరియు $(1,2,3)$ బిందువు గుండా పోయే గోళము సమీకరణము కనుక్కోండి.

5. Find the Pole of the plane x+2y+3z=7 with respect to the sphere $x^2+y^2+z^2-2x-4y-6z+11=0$.

$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 11 = 0$$
 గోళం దృష్ట్యే $x + 2y + 3z - 7 = 0$ తలము యొక్క దువము కనుక్కోండి.

Show that the general equation of the cone of the second degree which passes through the coordinate axes is fyz + gzx + hxy = 0.

(3)

నిరూపకాక్షాల గుండా పోయే శంఖువు యొక్క రెండవ పరిమాణ సమీకరణము fyz + gzx + hxy = 0 అని చూపండి.

- 7. Find the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 4y = 0$ with its vertex at (1,1,1).
 - (1,1,1) వద్ద శీర్నము ఉంది, $x^2+y^2+z^2+2x-4y=0$ అను గోళమునకు, స్పర్న శంఖువు సమీకరణము కనుక్కోండి.
- 8. Find the equation of the cylinder whose generators are parallel the line $\frac{x}{1} = \frac{-y}{2} = \frac{z}{3}$ and whose base curve is $x^2 + 2y^2 = 1$, z = 3.

జనక రేఖలు $\frac{x}{1} = \frac{-y}{2} = \frac{z}{3}$ నకు సమాంతరంగాను భూ వ్యక్షము $x^2 + 2y^2 = 1$, z = 3 గాను గల స్థూపక సమోకరణం కనుక్కోండి.

[Turn over

SECTION - B

సెక్షన్ – బి

Answer all the questions. Each question carries 10 marks. (5×10=50)

క్రింది ప్రశ్నాలన్నింటికి సమాధానము వ్రాయండి. ప్రతి ప్రశ్నకు 10 మార్కులు.

9. a) Find the equations of the planes bisecting the a cute angle between the planes 2x-y+2z+3=0, 3x-2y+6z+8=0.

2x - y + 2z + 3 = 0, 3x - 2y + 6z + 8 = 0 తలాల మధ్యగల లఘు కోణము యొక్క సమద్విఖందన తలమును కనుక్కోండి.

(OR/**ව්**ದ<u>ಾ</u>)

b) Show that the equation $12x^2 - 2y^2 + 6z^2 + 7$ yz + 6zx - 2xy = 0 represents pair of planes and find the angles between them.

 $12x^2 - 2y^2 + 6z^2 + 7yz + 6zx - 2xy = 0$ సమీాకరణము ఒక తలముగ్మాన్ని సూచిస్తుందని చూపి వాటి మధ్య కోణమును కనుక్కోండి.

10. a) Prove that the lines $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and x+2y+3z-8=0=2x+3y+4z-11 are intersecting and find the point of their intersection. Find the equation to the plane containing them.

$$\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$$
 మరియు $x+2y+3z-8=0$ $= 2x+3y+4z-11$ అనురేఖలు ఖండించుకుంటాయని ఋజువుచేయండి మరియు ఖండన బిందువును కనుక్కోండి యింకా ఆరేఖలను కలిగిన తలాన్ని కనుక్కోండి.

(OR/**ම්**ක<u>)</u>

b) Find the length and equations to the line of S.D between the lines $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-1}{2}$; $\frac{x-4}{4} = \frac{y-5}{5} = \frac{z-2}{3}$.

రేఖల మధ్య అల్పతమ దూరము, అల్పతమ దూర రేఖకు సమీకరణాన్ని కనుక్కోండి.

[Turn over

(6) [CB-BA228/CB-BS232]

11. a) Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4$ x+6y+4=0.

 $x^2 + y^2 + z^2 - 4x + 6y + 4 = 0$ గోళాన్ని లంబంగా ఖండిస్తూ (1,-2,1) వద్ద 3x + 2y - z + 2 = 0 తలాన్ని స్పుశించే గోళము సమీకరణాన్ని కనుక్కోండి.

(OR/ම්කා)

- b) Find the limiting points of the coaxial system defined by the spheres $x^2 + y^2 + z^2 + 4x + 2y + 2z + 6 = 0$; $x^2 + y^2 + z^2 + 2x 4y 2z + 6 = 0$ సమీకరణాలు సూచించే గోళాలతో నిర్ధిష్ఠమయ్యే సహతల గోళ సరణి అవధి బిందువులు కనుక్కోండి.
- 12. a) Prove that if the angle between the lines of the intersection of the plane x+y+z=0 and the cone ayz+bzx+cxy=0 is $\frac{\pi}{2}$ then a+b+c=0. x+y+z=0 అను తలము ayz+bzx+cxy=0 అను శంఖువు ను ఖండించే రేఖాయుగ్మ మధ్య కోణము $\frac{\pi}{2}$ అయితే a+b+c=0

అని నిరూపించండి.

(OR/**ව්**ದ<u>ಾ</u>)

b) Find the vertex of the Cone

$$7x^2 + 2y^2 + 2z^2 - 10zx + 10xy + 26x - 2y + 2z - 17 = 0$$

అను శంఖువునకు శీర్వమును కనుక్కోండి.

13. a) Find the equation to the right circular cylinder whose guiding circle is $x^2 + y^2 + z^2 = 9$, x-y+z=3. భూ వక్రము $x^2 + y^2 + z^2 = 9$, x-y+z=3 కలిగిన లంబవర్తుల స్వాపకము యొక్క సమీకరణము కనుగొనుము.

(OR/**ව්**ದಾ)

Find the equation to the enveloping cylinder of the sphere $x^2 + y^2 + z^2 + 2x - 4y - 1 = 0$ having its generators parallel to x = y = z.

 $x^2 + y^2 + z^2 + 2x - 4y - 1 = 0$ గోళాన్ని స్పుశిస్తూ, జనక రేఖలు x = y = z నకు సమాంతరంగా ఉన్న స్పర్న స్థూపక సమీాకరణము కనుక్కోండి.

BETTO GO GO GO GO

[Total No. of Printed Pages-7

[21-BA228/21-BS232]

ATTHE END OF SECOND SEMESTER (CBCS PATTERN) DEGREE EXAMINATIONS

MATHEMATICS-II-THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY

(COMMON FOR B.A, B.Sc)

UG PROGRAM (4 YEARS HONORS)

(w.e.f. Admitted Batch 2020-21)

Time: 3 Hours

Maximum: 75 Marks

SECTION-A

L Answer any Five of the following questions. Each question carries Five marks. $(5\times5=25)$

క్రింది వానిలో ఏవైనా **ఐదు** ప్రశ్నలకు సమాధానములు ద్రాయుము. ప్రతి ప్రశ్నకు **ఐదు** మార్కులు.

1. Find the equation of the plane through the point (-1,3,2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

(-1,3,2) బిందువు గుండా పోతూ x + 2y + 2z = 5 మరియు 3x + 3y + 2z = 8 తలాలకు లంబంగా ఉన్న తలం సమీకరణము కనుగొనుము.

[Turn over

2. A variable plane passes through a fixed point (a,b,c). It meets the axes of reference in A, B and C. Show that the locus of the point of intersection of the planes through A,B,C and parallel to the coordinate planes is

$$ax^{-1} + by^{-1} + cz^{-1} = 1$$

ఒక చర తలము (a,b,c)అనే స్థిర బిందువు గుండా పోతున్నది. ఆ తలము నిరూపకాక్షాలను A,B,C లవద్ద ఖండించుచున్నది. నిరూపక తలాలకు సమాంతరంగాను A,B,C బిందువుల గుండా పోవు తలాల ఖండన బిందువు బిందు పథము $ax^{-1} + by^{-1} + cz^{-1} = 1$ అని చూపండి.

- 3. Find the equation of the plane through (3,1,-1) and perpendicular to the line of intersection of the planes 3x+4y+7z+4=0, x-y+2z+3=0.
 - 3x+4y+7z+4=0, x-y+2z+3=0. తలాల చేదన రేఖకు లంబంగా ఉంటూ (3,1,-1) బిందువు గుండా పోయే తలము సమీకరణం కనుక్కోండి.
 - 4. Find the equation to the line through the origin and intersecting the lines 2x-3y+4z+1=0=3x+2y+4z-5, 2x-4y+z+6=0=3x-4y+z-3.

$$2x-3y+4z+1=0=3x+2y+4z-5$$
, $2x-4y+z+6=0=3x-4y+z-3$ అనే రేఖలను ఖండిస్తూ, మూల బిందువు ద్వారా పోయే రేఖకు సమీకరణం కనుక్కొండి.

- 5. A sphere of constant radius k passes through the origin and intersects the axes in A,B,C. Prove that the centroid of the Δ ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$ k స్థిర వ్యాసార్థముగాగల ఒక గోళము మూలబిందువు గుండా పోతూ అక్షాలను A,B,C ల వద్ద ఖండిన్నున్నది Δ A,B,C కేండ్రాభాన ము $9(x^2 + y^2 + z^2) = 4k^2$ గోళముపైన ఉంటుందని చూపండి.
- 6. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1,2,3).
 - $x^2 + y^2 + z^2 = 9,2x + 3y + 4z = 5$ అనే పృత్తం గుండా మరియు (1,2,3) బిందువు గుండా పోయే గోళం సమీకరణం కనుక్కోండి.
- 7. Find the enveloping cone of the sphere $x^2+y^2+z^2+2x-4y=0$ with its vertex at (1,1,1). (1,1,1) వద్ద శీర్నం ఉంది, $x^2+y^2+z^2+2x-4y=0$ అను గోళమునకు, స్పర్న శంఖువు సమీకరణమును కనుక్కోండి.
- 8. Show that the two lines of intersection of the plane ax + by + cz = 0 with the cone yz + zx + xy = 0 will be perpendicular if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.

ax + by + cz = 0 అనుతలము yz + zx + xy = 0 అనుతలమును రెండు రేఖల వద్ద ఖండిస్తే, ఆ రేఖలు లంబంగా ఉండడానికి నియమము $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$

[Turn over

SECTION-B

Answer All questions. Each question carries Ten marks. (5×10=50)

అన్ని ప్రశ్నలకు సమాధానములు వ్రాయుము. ప్రతి ప్రశ్నకు పది మార్కులు.

9. a) Find the bisector of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0. 2x - y + 2z + 3 = 0 adom 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - 2y + 6z + 8 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - 2y + 6z + 8 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - 2y + 6z + 8 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - 2y + 6z + 8 = 0 and 3x - 2y + 6z + 8 = 0 seame analysis of the acute angle between the planes 2x - 2y + 6z + 8 = 0 and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y + 6z + 8 = 0 seame and 3x - 2y +

b) Show that the equation

 $12x^2-2y^2-6z^2+7yz+6zx-2xy=0$ represent pairs of planes. Also find the angle between them. $12x^2-2y^2-6z^2+7yz+6zx-2xy=0$ న మీక రణము రెండు తలాలను సూచించునని చూపుము మరియు వాటి మధ్య కోణమును కనుక్యొండి.

10. a) Prove that the lines $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and x+2y+3z-8=0=2x+3y+4z-11 are intersecting and find the point of their intersection Find also the equation to the plane containing them.

$$\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$$
 మరియు
 $x+2y+3z-8=0=2x+3y+4z-11$

అను రేఖలు ఖండించుకుంటాయని ఋజువు చేయండి. మరియు ఖండన బిందువును కనుక్కోండి ఇంకా ఆరేఖలను కల్గి ఉన్న తలాన్ని కనుక్కోండి.

- b) Find the length and equations of the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$. అనురేఖల మధ్య అల్పతమ దూరాన్ని కనుక్కోండి. ఇంకా అల్పతమరేఖ సమీకరణములను కనుక్కోండి.
- 11. a) Show that the plane 2x 2y + z + 12 = 0 touches the sphere

 $x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$ and find the point of contact.

$$x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$$
 అనే గోళాన్ని
$$2x - 2y + z + 12 = 0$$
 తలము స్పృశిస్తుంది అని చూపి మరియు దాని స్పర్న బిందువు కనుక్యాండి.

(OR/ඒක්)

[Turn over

b) Show that the spheres $x^2 + y^2 + z^2 - 25 = 0$,

(6)

$$x^{2} + y^{2} + z^{2} - 24x - 40y - 18z + 225 = 0$$

touch externally at the point $\left(\frac{12}{5}, 4, \frac{9}{5}\right)$.

$$x^2 + y^2 + z^2 - 25 = 0,$$

$$x^2 + y^2 + z^2 - 24x - 40y - 18z + 225 = 0$$

అనే గోళాలు $\left(\frac{12}{5}, 4, \frac{9}{5}\right)$ వద్ద బాహ్యంగా స్పుశించుకొంటాయని

12. a) Find the limiting points of the coaxial system of spheres of which two members are

$$x^{2} + y^{2} + z^{2} + 3x - 3y + 6 = 0$$
;

$$x^{2} + y^{2} + z^{2} - 6y - 6z + 6 = 0$$

$$x^{2} + y^{2} + z^{2} + 3x - 3y + 6 = 0$$
;

$$x^2 + y^2 + z^2 - 6y - 6z + 6 = 0$$

గోళాలతో నిర్దిష్ట మయ్యే సహాతల గోళ సరణికి అవధి బిందువులు కనుక్కొండి.

(OR/**ම්**ක್)

b) Find the equation of the cone with vertex at (-1,1,2) guiding curves $3x^2 - y^2 = 1, z = 0$.

శీర్వం (-1,1,2) మరియు భూ వక్రము
$$3x^2 - y^2 = 1, z = 0$$
 గానుకల శంఖువు సమీకరణము కనుక్మాండి.

Find the equation of the right circular cone whose vertex is p(2,-3,5), axis PQ which makes equal angles with the axes and semi-vertical angle 30°.

(2,-3,5) శీర్నము గానూ, 30° శీర్వార్ధ కోణమును కలిగి ఉన్న శంఖువు యొక్క అక్షము PQ నిరూపకాక్షాలతో సమాన కోణము చేస్తే, ఆశంఖువు యొక్క సమీకరణము కనుక్కోండి.

(OR/ฮ්దా)

b) Prove that the perpendiculars drawn from the origin to tangent planes to the

$$2x^{2} + 3y^{2} + 4z^{2} + 2yz + 4zx + 6xy = 0$$
 lie on the cone

$$11x^2 + 4y^2 - 3z^2 + 8yz - 6zx - 20xy = 0$$

మూలబిందువు నుండి

$$2x^2 + 3y^2 + 4z^2 + 2yz + 4zx + 6xy = 0$$
 అను శంఖువు యొక్క స్పర్న తలములక గీసిన అభిలంబ రేఖలు

$$11x^2 + 4y^2 - 3z^2 + 8yz - 6zx - 20xy = 0$$
 అను

శంఖువు పై ఉంటుందని చూపండి.